Mechanicsscience concerned with the motion of bodies under the action of forces, including the special case in which a body remains at rest. Of first concern in the problem of motion are the forces that bodies exert on one another. This leads to the study of such topics as gravitation, electricity, and magnetism, according to the nature of the forces involved. Given the forces, one can seek the manner in which bodies move under the action of forces; this is the subject matter of mechanics proper.

Historically, mechanics was among the first of the exact sciences to be developed. Its internal beauty as a mathematical discipline and its early remarkable success in accounting in quantitative detail for the motions of the Moon, the Earth, and other planetary bodies had enormous influence on philosophical thought and provided the impetus for the systematic development of science into the 20th century.

Mechanics may be divided into three branches: statics, which deals with forces acting on and in a body at rest; kinematics, which describes the possible motions of a body or system of bodies; and kinetics, which attempts to explain or predict the motion that will occur in a given situation. Alternatively, mechanics may be divided according to the kind of system studied. The simplest mechanical system is the particle, defined as a body so small that its shape and internal structure are of no consequence in the given problem. More complicated is the motion of a system of two or more particles that exert forces on one another and possibly undergo forces exerted by bodies outside of the system.

 Topical Notes, Topical Notes, Problems, Presentations, Quiz, Test, Investigations and Videos 2.1. Motion 2.2 . Forces 2.3 . Work, energy and power 2.4 . Momentum and impulse

The principles of mechanics have been applied to three general realms of phenomena. The motions of such celestial bodies as stars, planets, and satellites can be predicted with great accuracy thousands of years before they occur. (The theory of relativity predicts some deviations from the motion according to classical, or Newtonian, mechanics; however, these are so small as to be observable only with very accurate techniques, except in problems involving all or a large portion of the detectable universe.) As the second realm, ordinary objects on Earth down to microscopic size (moving at speeds much lower than that of light) are properly described by classical mechanics without significant corrections. The engineer who designs bridges or aircraft may use the Newtonian laws of classical mechanics with confidence, even though the forces may be very complicated and the calculations lack the beautiful simplicity of celestial mechanics. The third realm of phenomena comprises the behaviour of matter and electromagnetic radiation on the atomic and subatomic scale. Although there were some limited early successes in describing the behaviour of atoms in terms of classical mechanics, these phenomena are properly treated in quantum mechanics.